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ABSTRACT 
Simple harmonic motion comes up in many places in physics and provides a generic first approximation to models of oscillatory motion. 
The mass oscillating on a spring and the oscillation of LC circuit appear to have little in common because the two systems are apparently 
different systems but both can be described in terms of second order differential equations with constant coefficients of the same form. 
With the absence of friction in the mass-spring system, the oscillations would continue indefinitely and we obtain equations for the ways 
in which the displacement, velocity and acceleration of a simple harmonic oscillator vary with time and the ways in which the kinetic 
and potential energies of the oscillator vary. Similarly, the oscillations of an LC circuit with no resistance would continue forever if 
undisturbed and we obtain equations for time varying charge, current, energy stored in inductor and energy stored in capacitor. Therefore, 
the aim of this article is to discuss the properties of oscillations of mass-spring system and provide interesting analogies with oscillations 
in LC circuit. 
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INTRODUCTION 
Oscillations occur in many branches of physics, but in this article 

I discuss the oscillations of mass-spring system without friction 

and LC circuit oscillations without resistance. A mass oscillating 

on a spring and the oscillation of LC circuit appear to have little in 

common; but the mathematics models them is almost 

indistinguishable and both can be described in terms of a second 

order differential equations with constant coefficients. In this case 

the second order differential equation with constant coefficients 

for equation of motion is  
𝑑2𝑋

𝑑𝑡2 = −𝜔2𝑋------------------------------------------------ (1) 

where, X represents the small displacement (x) from equilibrium 

position in the mass - spring system or the charge (q) in the LC 

circuit and 𝜔 represents constant coefficients [1, 2]. This equation 

of motion has a general solution which is given by: 

              𝑋(𝑡) =  𝐴𝑐𝑜𝑠(𝜔𝑡) +  𝐵 𝑠𝑖𝑛(𝜔𝑡 ) =  𝐶 𝑐𝑜𝑠(𝜔𝑡 +  𝜙) - 

(2) 
C is called the amplitude of the oscillation,  𝜔  is the angular 

frequency and  ϕ is the phase [2]. 

Furthermore in this article I also briefly describe some of the 

conditions in which such equations arise and then investigate the 

reasons why such apparently different systems exhibit very similar 

behavior. 

I. Mass-Spring System 

Consider a block of mass m attached to the end of a spring, with 

the block free to move on a horizontal, frictionless surface as 

shown in the figure below [3].  

Figure 1: A block attached to a spring moving on a frictionless 

surface. (a) When the block is displaced to the right of equilibrium 

(x> 0), the force exerted by the spring acts to the left. (b) When 

the block is at its equilibrium position (x = 0), the force exerted by 

the spring is zero. (c) When the block is displaced to the left of 

equilibrium 

 (x < 0), the force exerted by the spring acts to the right [3] . 

When the spring is neither stretched nor compressed, the block is 

at the position called the equilibrium position of the system, which 

we identify as 𝑥 =  0.  If the block is displaced to a position x, the 

spring exerts a force on the block that is proportional to the 

position and given by Hooke’s law   

𝐹𝑠 = −𝑘𝑥------------------------------------------- (3) 

This force is called a restoring force because it is always directed 

toward the equilibrium position and therefore opposite the 

displacement from equilibrium.  

The system must obey Newton’s second law of motion which” 

states that the force is equal to mass 𝑚  times acceleration  𝑎”. 

Applying Newton’s second law ∑ 𝐹𝑥 = 𝑚𝑎𝑥to the motion of the 

block, with 𝐹𝑠 = −𝑘𝑥 providing the net force in the x direction, we 

obtain [2, 3, 4, 5, 6] 

−𝑘𝑥 = 𝑚𝑎𝑥………………………………… (4) 

 𝑎𝑥 = −
𝑘

𝑚
𝑥--------------------------------------- (5) 

That is, the acceleration is proportional to the position of the block, 

and its direction is opposite the direction of the displacement from 

equilibrium. Systems that behave in this way are said to exhibit 

simple harmonic motion.  

Modeling the block as a particle subject to the force 𝐹𝑠 = −𝑘𝑥, and 

assuming that the oscillation occurs along the x-axis, equation (5) 

can be rewritten as  
d2x

dt2 = −
k

m
x--------------------------------------- (6) 

https://scienceq.org/journals/jpcs.php
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Recall that, by definition, 𝑎𝑥 =
𝑑𝑣𝑥

𝑑𝑡
  and 𝑣𝑥 =

𝑑𝑥

𝑑𝑡
   this implies that 

𝑎𝑥 =
𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
) =

𝑑2𝑥

𝑑𝑡2  

 

If we denote the ratio  
𝑘

𝑚
 with the symbol 𝜔2,  𝜔2 =

𝑘

𝑚
 

𝜔 = √
𝑘

𝑚
 ----------------------------------------- (7) 

Accordingly, 
𝑑2𝑥

𝑑𝑡2 = −𝜔2𝑥-------------------------------------- (8) 

The general solution to the above differential equation is 

𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + ϕ)------- ------------------ (9) 

Where A, 𝜔, and ϕ are constants. 
In order to give physical significance to these constants, it is 
convenient to form a graphical representation of the motion by 
plotting x as a function of t, as in figure below. 
                  

  
Figure 2: position versus time graph for an object undergoing 
simple harmonic motion [4]. 
A is called the amplitude of the motion, and it is simply the 
maximum value of the position of the particle in either the positive 
or negative x direction.  
The period T of the motion is the time interval required for the 
particle to go through one full cycle of its motion. 

       𝑇 =
2𝜋

𝜔
----------------------------------------- (10) 

The inverse of the period is called the frequency f of the motion. 

     𝑓 =
1

𝑇
=

𝜔

2𝜋
------------------------------------ (11) 

The units of f are cycles per second, or hertz (Hz). Rearranging the 
above equation gives 

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
----------------------------------- (12) 

In terms of the characteristics m and k, the period and frequency 
of the motion for the particle–spring system can be expressed as 
follows. 

𝑇 =
2𝜋

𝜔
= 2𝜋√

𝑚

𝑘
-------------------------------- (13) 

𝑓 =
1

𝑇
=

1

2𝜋
√

𝑘

𝑚
--------------------------------- (14) 

Thus the period and frequency depend only on the mass of the 
particle and the force constant of the spring. 
The velocity of the particle undergoing simple harmonic motion 
becomes 

𝑣𝑥 =
𝑑𝑥

𝑑𝑡
= 𝐴

𝑑

𝑑𝑡
𝑐𝑜𝑠(𝜔𝑡 + ϕ) 

𝑣𝑥 = −𝜔𝐴𝑠𝑖𝑛(𝜔𝑡 + ϕ)------ ------------------ (15) 

𝑎𝑥 =
𝑑2𝑥

𝑑𝑡2
=

𝑑𝑣

𝑑𝑡
=

𝑑(−𝜔𝐴𝑠𝑖𝑛(𝜔𝑡 + ϕ))

𝑑𝑡
 

𝑎𝑥 = −𝜔2𝐴𝑐𝑜𝑠(𝜔𝑡 + ϕ)------------------ (16) 

Since the sine and cosine functions oscillate between ±1 , the 

extreme values of the velocity v are ±𝜔A. Similarly, the extreme 

values of the acceleration a are±𝜔2𝐴. Therefore, the maximum 
values of the magnitudes of the velocity and acceleration are  

𝑣𝑚𝑎𝑥 = 𝜔𝐴 = 𝐴√
𝑘

𝑚
------------------------------------(17) 

  𝑎𝑚𝑎𝑥 = 𝜔2𝐴 = 𝐴
𝑘

𝑚
-----------------------------------(18) 

Graphs of position, velocity and acceleration as a function of time 
are displayed in real time in the same window, illustrated in Figure 

3. As shown in the top and middle plots the maximum and 
minimum values of the position occur when the velocity is zero. 
Likewise the maximum and minimum values of velocity occur 
when the position is at its equilibrium. It is also observed that both 
graphs position vs. time and velocity vs. time are periodic waves 
of the same frequency just shifted by 90° or π/2. Furthermore, note 
that the phase of the acceleration differs from the phase of the 

position by 𝜋 radians, or 180° [7].  
                                    

 
Figure 3: Graphs of position, velocity and acceleration as a 
function of time [7]. 
Let us examine the mechanical energy of the block–spring system 
illustrated in the figure below. The only horizontal force on the 
block–spring system is the conservative force exerted by an ideal 
spring. The vertical forces do no work, so the total mechanical 
energy of the system is conserved [3, 4].  
We assume a mass less spring, so the kinetic energy of the system 
corresponds only to that of the block. Therefore, the kinetic energy 
of the block is 

𝐾 =
1

2
𝑚𝑣2 ,          but 𝑣 = −𝜔𝐴𝑠𝑖𝑛(𝜔𝑡 + ϕ) → 𝑣2 =

𝜔2𝐴2𝑠𝑖𝑛2(𝜔𝑡 + ϕ) 

𝐾 =
1

2
𝑚𝜔2𝐴2𝑠𝑖𝑛2(𝜔𝑡 + ϕ) ---------------------------------------- 

(19) 
The elastic potential energy stored in the spring for any elongation 
x is given by 

𝑈 =
1

2
𝑘𝑥2,         but 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + ϕ) → 𝑥2 = 𝐴2𝑐𝑜𝑠2(𝜔𝑡 +

ϕ) 

𝑈 =
1

2
𝑘𝐴2𝑐𝑜𝑠2(𝜔𝑡 + ϕ)------------------------------------------- (20) 

Since 𝜔2 =
𝑘

𝑚
, we can express the total mechanical energy of the 

simple harmonic oscillator as 

𝐸 = 𝐾 + 𝑈 =
1

2
𝑘𝐴2[𝑠𝑖𝑛2(𝜔𝑡 + ϕ) + 𝑐𝑜𝑠2(𝜔𝑡 + ϕ)]------- (21) 

But, from trigonometric identity, 

𝑠𝑖𝑛2(𝜔𝑡 + ϕ) + 𝑐𝑜𝑠2(𝜔𝑡 + ϕ) = 1 
 
Therefore, the equation reduces to  

                                 𝐸 =
1

2
𝑘𝐴2----------------------------------- (22) 

That is, the total mechanical energy of a simple harmonic 
oscillator is a constant of the motion and is proportional to the 
square of the amplitude. 
Energy is continuously being transformed between potential 
energy stored in the spring and kinetic energy of the block. When 

the body reaches the point 𝑥 = 𝐴 its maximum displacement from 
equilibrium, it momentarily stops as it turns back toward the 

equilibrium position. That is, when  𝑥 = ±A, because v = 0 at these 

points the energy is entirely potential, and 𝐸 =
1

2
𝑘𝐴2. Because E 

is constant, it is equal to 𝐸 =
1

2
𝑘𝐴2 at any other point. At the 

equilibrium position (x= 0), the energy is entirely kinetic because 
U = 0, the total energy, all in the form of kinetic energy is 

again   𝐸 =
1

2
𝑘𝐴2 .We can use the principle of conservation of 

energy to obtain the velocity for an arbitrary position by 

expressing the total energy at some arbitrary position x as 𝐸 =
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𝐾 + 𝑈 →
1

2
𝑚𝑣2 +

1

2
𝑘𝑥2 =

1

2
𝑘𝐴2. 

Solving for v gives  

             𝑣 = ±√
𝑘

𝑚
(𝐴2 − 𝑥2) = ±𝜔√𝐴2 − 𝑥2----------------- (23)                                    

 
Figure 4: Kinetic energy and potential energy versus time for a 

simple harmonic oscillator with ϕ = 0 [8]. 

                  II. Oscillations in LC Circuits 
LC circuit is the simplest example of an oscillating electrical 
circuit consists of an inductor L and capacitor C connected 
together in series with a switch [2]. Unlike a resistor, which always 
resists the flow of current, an inductor tends to oppose changes to 
the flow of electric current. 
                                         

 
Figure 5: A simple LC circuit [3]. 
 A circuit containing an inductor and a capacitor shows an entirely 
new mode of behavior, characterized by oscillating current and 
charge [2, 3, 4, 5, 6]. 

The voltage drop 𝑣𝐿 across an inductor is given by the formula  

                               𝑣𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
   -------------------------- (24)   

And the voltage drop 𝑣𝐶  across a capacitor is given by the formula 

                               𝑣𝐶 =
𝑞

𝐶
  ----------------------------- (25)    

To study this oscillation in detail, we apply Kirchhoff’s loop rule 
to the circuit in Fig.5.which states that “the sum of the voltages 
around any loop of the circuit is zero”  

                     𝑣𝐿 + 𝑣𝐶 = 0-------------------------------- (26) 

                         −𝐿
𝑑𝑖

𝑑𝑡
−

𝑞

𝐶
= 0 -------------------------- (27)        

Since 𝑖 =
𝑑𝑞

𝑑𝑡
 it follows that  

𝑑𝑖

𝑑𝑡
=

𝑑2𝑞

𝑑𝑡2    

 Substituting this expression into equation (27) and dividing by −𝐿 
one can obtain 

                 
 𝑑2𝑞

𝑑𝑡2 +
𝑞

𝐿𝐶
= 0--------------------------------- (28) 

If we denote the  
1

√𝐿𝐶
 with the symbol  𝜔,  𝜔2 =

1

𝐿𝐶
 

𝜔 =
1

√𝐿𝐶
 --------------------------------------------------- (29) 

Accordingly,         
𝑑2𝑞

𝑑𝑡2 = −𝜔2𝑞------------------------ (30) 

The Mathematical solution to the above differential equation is  

                            𝑞(𝑡) = 𝑞𝑚𝑎𝑥𝑐𝑜𝑠(𝜔𝑡 + ϕ)-------- -- (31) 

where 𝑞𝑚𝑎𝑥 , 𝜔, and ϕ are constants.  
The period T of the oscillation in LC circuit is 

                        𝑇 =  2𝜋√𝐿𝐶 ---------------------------------------------
---------------------------------------- (32) 
The inverse of the period is called the frequency f of the 
oscillation. 

                  𝑓 =
1

𝑇
=

1

2𝜋√𝐿𝐶
------------------------------------------------

--------------------------------------- (33) 
That is, the period and frequency depend only on the charge across 
the capacitor and the capacitance of the capacitor. 
For the given harmonically oscillating charge, the voltage and the 
current in the LC circuit also oscillate according to eq (25).  

𝑣 =
𝑞𝑚𝑎𝑥

𝐶
cos (𝜔𝑡 + ϕ) 

                     𝑣 = 𝑣𝑚𝑎𝑥cos (𝜔𝑡 + ϕ) -----------------------------------
----------------------------------------------- (34) 

𝑖 =
𝑑𝑞(𝑡)

𝑑𝑡
= 𝑞𝑚𝑎𝑥

𝑑

𝑑𝑡
𝑐𝑜𝑠(𝜔𝑡 + ϕ) 

                      𝑖 = −𝜔𝑞𝑚𝑎𝑥𝑠𝑖𝑛(𝜔𝑡 + ϕ)-------------------------------
----------------------------------------------- (35) 

Where 𝜔𝑞𝑚𝑎𝑥  𝑖𝑠 maximum current and is given by 

                       𝑖𝑚𝑎𝑥 = 𝜔𝑞𝑚𝑎𝑥 = 𝑞𝑚𝑎𝑥
1

√𝐿𝐶
 ----------------------------

-----------------------------------------------(36) 
Roughly speaking, if we assume that the capacitor begins charged, 
then the capacitor begins by discharging through the inductor, 
slowly at first but picking up speed as the inductor lets more 
current through. Once the capacitor is fully discharged, the 
inductor continues pushing current through the circuit, which 
drains even more charge from the capacitor, leaving it with a 
negative total charge. The capacitor then reverses the flow of 
current to regain the lost charge, but the same thing happens again, 
with the inductor continuing to push current through in the reverse 
direction until the capacitor is back to its initial charged state. The 
cycle thus continues indefinitely. 
Thus the charge and current in an L-C circuit oscillate sinusoidally 
with time, with an angular frequency determined by the values of 
L and C.  

                                
    
Figure 6: Graphs of charge versus time and current versus time 
for a résistance less, non radiating LC circuit [9].  
Since the L-C circuit is a conservative system, we can analyze the 
circuit using an energy approach and we expect that the total 
energy stored in the system to be constant. When the capacitor is 
fully charged, the energy U in the circuit is stored in the electric 

field of the capacitor and is equal to  
𝑞𝑚𝑎𝑥

2

2𝐶
 . At this time, the current 

in the circuit is zero, and therefore no energy is stored in the 
inductor. After the switch is closed, the rate at which charges leave 
or enter the capacitor plates (which is also the rate at which the 
charge on the capacitor changes) is equal to the current in the 
circuit. As the capacitor begins to discharge after the switch is 
closed, the energy stored in its electric field decreases. The 
discharge of the capacitor represents a current in the circuit, and 
hence some energy is now stored in the magnetic field of the 
inductor [3, 4]. 
The electric potential energy stored in the capacitor is given by 

                        𝑈𝐶 =
𝑞𝑚𝑎𝑥

2

2𝐶
𝑐𝑜𝑠2(𝜔𝑡 + ϕ)------------- (37) 

The magnetic energy stored in the inductor, 

                          𝑈𝐿 =
𝐿𝑖2

2
𝑠𝑖𝑛2(𝜔𝑡 + ϕ)------------- - (38) 

Combining equations (37) and (38) the total electrical energy of 
the LC oscillator can be expressed as 
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                   𝑈 = 𝑈𝐶 + 𝑈𝐿 =
1

2𝐶
𝑞𝑚𝑎𝑥

2[𝑠𝑖𝑛2(𝜔𝑡 + ϕ) +

𝑐𝑜𝑠2(𝜔𝑡 + ϕ)]                --- (39) 
 
 
But, from trigonometric identity,  

𝑠𝑖𝑛2(𝜔𝑡 + ϕ) + 𝑐𝑜𝑠2(𝜔𝑡 + ϕ) = 1 
Therefore, the equation reduces to  

                                     𝑈 =
1

2𝐶
𝑞𝑚𝑎𝑥

2---------------- (40) 

That is, the total electrical energy of a LC oscillator is a constant 
of the motion and is proportional to the square of the amplitude 
charge. Energy is continuously being transformed between 
potential energy stored in the capacitor and inductor. We can use 
the principle of conservation of energy to obtain the expression for 
electric current as 

𝑈 = 𝑈𝐶 + 𝑈𝐿 =→
𝑞2

2𝐶
+

𝐿𝑖2

2
=

1

2𝐶
𝑞𝑚𝑎𝑥

2 

Solving for 𝑖 gives 

𝑖 = ±√
1

𝐿𝐶
(𝑞𝑚𝑎𝑥

2 − 𝑞2) = ±𝜔√𝑞𝑚𝑎𝑥
2 − 𝑞2------- (41) 

 
Figure.7: Graphs of magnetic energy stored in inductor and 
electric potential energy stored in capacitor versus time for 

oscillations in LC Circuit with ϕ = 0 [9]. 
 

III. Comparing Simple harmonic motion for a mass-

spring system with the oscillations in LC Circuit 
 Comparing equations (8-23) with equations (30-41), the 

simple harmonic motion for a mass-spring system and 
oscillations in LC Circuit have the same form. Thus all the 
discussions about the simple harmonic motion for a mass-
spring system can be carried over to oscillations in LC Circuit. 
Moreover one can see a direct correspondence between the 
two sets of physical quantities involved:  

 Displacement (x) corresponds to the charge(q); 

 Velocity (vx) corresponds to the current(𝑖 ); 

 Inductance(L) corresponds to the mass (m); 
 Spring constant (k) corresponds to the Inverse of 

capacitance (1/𝐶).  

 Force(𝐹𝑥) corresponds to the voltage(v) ; 
  Kinetic energy of moving block corresponds to 

the magnetic energy stored in inductor and 
  Potential energy stored in a stretched spring 

corresponds to the electric potential energy 
stored in the capacitor. 

 Comparing graphs in figure (3) with figure (6), for oscillating 
mass spring system the maximum and minimum values of 
velocity occur when the displacement is zero and the 
maximum and minimum values of displacement occur when 
the velocity is zero; and in LC circuit oscillation, the 
maximum and minimum values of current occur when the 
charge on the capacitor is zero and the maximum and 
minimum values of charge occur when the current in the 
circuit is zero. Thus the displacement of a stretched spring is 
analogous to the charge on the capacitor and the velocity of 
the moving block of mass m is analogous to the current in the 
inductor.     

 Comparing graphs in figure (4) with figure (7), for oscillating 
mass spring system, the total energy is equal to the maximum 

potential energy stored in the spring when x = ±A, and at x= 
0 the total energy is equal to the kinetic energy and is equal 

to  𝐸 =
1

2
𝑘𝐴2; and in LC circuit oscillation, the total energy is 

equal to maximum electric potential energy stored in the 
electric field of the capacitor when the current in the circuit is 
zero and at q= 0, the total energy is all in the form the 

magnetic energy stored in the inductor and is equal to  𝑈 =
𝑞𝑚𝑎𝑥

2

2𝐶
 2 . This implies that the potential energy stored in a 

stretched spring is analogous to the electric potential energy 
stored in the capacitor and the kinetic energy of the moving 
block is analogous to the magnetic energy stored in the 
inductor. 

Therefore, the properties   oscillations of mass-spring system are 
very important and provide interesting analogies with oscillations 
in LC circuit.  

 
 
The following table summarizes the physical quantities involved 
in simple harmonic motion for mass-spring system and L-C circuit 
oscillations and the analogies between them. 
 

Mass-spring system LC circuit 

Quantities Equations Quantities Equations 
Position(x) 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + ϕ) Charge  𝑞(𝑡) = 𝑞𝑚𝑎𝑥𝑐𝑜𝑠(𝜔𝑡 + ϕ) 

Velocity(𝑣𝑥) 𝑣𝑥(𝑡) = −𝜔𝐴𝑠𝑖𝑛(𝜔𝑡 + ϕ) Current  𝑖(𝑡) = −𝜔𝑞𝑚𝑎𝑥𝑠𝑖𝑛(𝜔𝑡 + ϕ) 

Acceleration (𝑎𝑥) 𝑎𝑥(𝑡) = −𝜔2𝐴𝑐𝑜𝑠(𝜔𝑡 + ϕ) Rate of change of 
current 

𝑑𝑖(𝑡)

𝑑𝑡
= −𝜔2𝑞𝑚𝑎𝑥𝑐𝑜𝑠(𝜔𝑡 + ϕ) 

Force (𝐹𝑥) 𝐹𝑥(𝑡) = −𝑘𝐴𝑐𝑜𝑠(𝜔𝑡 + ϕ) Voltage  𝑣(𝑡) =
𝑞𝑚𝑎𝑥

𝐶
𝑐𝑜𝑠(𝜔𝑡 + ϕ) 

Mass(m) 
𝑚 =

𝑘

𝜔2
 

Inductance 
𝐿 =

1

𝐶𝜔2
 

1 

𝑘
(k=spring 

constant) 

1

𝑘
=

1

𝑚𝜔2
 

Capacitance  
𝐶 =

1

𝐿𝜔2
 

Angular 
frequency 𝜔 = √

𝑘

𝑚
 

Angular frequency 

𝜔 = √
1

𝐿𝐶
 

Period 
𝑇 =

2𝜋

𝜔
= 2𝜋√

𝑚

𝑘
 

Period 𝑇 = 2𝜋√𝐿𝐶 
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Frequency 

𝑓 =
1

𝑇
=

1

2𝜋
√

𝑘

𝑚
 

Frequency 

𝑓 =
1

2𝜋
√

1

𝐿𝐶
 

Kinetic energy  of 
moving block  

𝐾 =
1

2
𝑚𝑣𝑚𝑎𝑥

2 𝑠𝑖𝑛2(𝜔𝑡 + ϕ) 
Magnetic energy 
stored in inductor 

𝑈𝐿 =
1

2
𝐿𝑖𝑚𝑎𝑥

2 𝑠𝑖𝑛2(𝜔𝑡 + ϕ) 

Potential energy 
stored in spring 
 

𝑈 =
1

2
𝑘𝐴2𝑐𝑜𝑠2(𝜔𝑡 + ϕ) 

Electric energy 
stored in capacitor 

𝑈𝐶 =
1

2𝐶
𝑞𝑚𝑎𝑥

2𝑐𝑜𝑠2(𝜔𝑡 + ϕ) 

Total energy 
𝐸 =

1

2
𝑘𝐴2 

Total energy 
𝑈 =

1

2𝐶
𝑞𝑚𝑎𝑥

2 

 

CONCLUSION  

Generally speaking, the mass-spring system and the LC circuit are 

the two very different physical systems but both can be described 

by similar second order differential equations with constant 

coefficients because mathematical model is the same in both cases. 

Comparing equation (8) with equation (30), the two equations 

have the same form and the general solutions for displacement and 

charge take the same form as indicated in equations (9) and (31). 

This shows that the displacement oscillation of the mass-spring 

system driven by an externally supplied sinusoidal force is 

analogous to the charge oscillation in the LC circuit driven by an 

externally supplied sinusoidal voltage. Thus the similar 

discussions can be carried over the simple harmonic motion for a 

mass-spring and oscillations in LC Circuit. Moreover there is a 

direct correspondence between charge (q) and displacement (x); 

current (𝑖) and velocity (vx) ; inductance (L) and mass (m); inverse 

of capacitance (1/𝐶) and spring constant (k) ;force( 𝐹𝑥 ) and 

voltage(v) ; kinetic energy of moving block  and magnetic energy 

stored in inductor; potential energy stored in a stretched spring and 

electric potential energy stored in the capacitor. Therefore, the 

properties of oscillations of mass-spring system are very important 

and provide interesting analogies with oscillations in LC circuit.  
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