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ABSTRACT
Rainfall is natural climatic phenomena for which prediction constitutes a great challenge nowadays. Its forecast is of particular 
relevance to agriculture and medicinal plants growth and development, which contribute significantly to the economy of Africa. 
Rainfall is highly non-linear and complicated phenomena, which require mathematical modelling and simulation for its accurate 
prediction. The present study examined the monthly precipitation using the Box-Jenkins methodology. The monthly precipitations 
data were collected from Binza Meteorological station of Kinshasa (Democratic Republic of the Congo) during the year 1970 to 
2009. The results of the estimated parameters revealed that ARIMA (5, 1, 1) model is appropriate for the series. In the first analysis, 
we standardized this time series, then we have modeled the resulting series by model ARIMA (5, 1,1). In the second analysis, we 
carried out a modeling of these quantities using ARIMA model according to three processes: Identification of the model, validation 
of the model and estimate of the model. In order to compare the results of these two modeling, the average relative quadratic errors 
(er) and the average quadratic errors (EM) of the forecast adjustment were evaluated. These models appear equivalent in terms of 
these two errors. In the third analysis, we established a forecast of various corresponding years and we show that the event-based 
estimation approach yields better forecasts. It can be therefore concluded that the use of ARIMA model as tool for predicting 
rainfall could help in agricultural research development and in predicting the best period for the harvest of medicinal plant samples 
for phytotherapy (the quality/quantity of secondary metabolites and bioactivity). This model also makes it possible to predict the 
implication of rainfall on the lifestyle of the Kinshasa inhabitants. 
             Keywords: Rainfall, forecast, statistics, ARIMA model 
 
INTRODUCTION 
Rainfall is natural climatic phenomena for which prediction 
constitutes a great challenge nowadays. Its forecast is of 
particular relevance to agriculture and medicinal plants growth 
and development, which contribute significantly to the 
economy of Africa [1]. 
Plants are a key product for the Congolese population. Almost 
all Congolese populations, both urban and rural, depend on 
plants for their health care as source of nutraceuticals or 
phytomedicines [2-6]. The quantity and quality of the 
biologically active secondary metabolites in such plant species 
are affected by climatic factors such as temperature and 
humidity (rainfall/floods and periods of dryness) [7, 8]. 
Attempts have been made to predict behavioral pattern of 
rainfall using autoregressive integrated moving average 
(ARIMA) technique. ARIMA model is basically a linear 
statistical technique for modeling the time series and rainfall 
forecasting which ease to develop [1]. 
The Democratic Republic of Congo (DRC) has enormous fresh 
water reserves, however does not have enough data to estimate 
this reserve. The country has the weather stations which collect 

rainfall records but these data present gaps following the 
multiple difficulties encountered by the personnel made at this 
work.  Indeed, DRC is drained in its totality by the Congo River 
and its effluents thus delivering passage in addition, with great 
potentialities of the easily flooded grounds whose surface 
remains not negligible [9].  
The series of observations of precipitation from the year 1970 
to 2009 are the data used in this study. The database was 
provided by the Binza Meteorological station of Kinshasa. 
After the homogeneity of the series checking, we subjected the 
series to statistical test in order to check the trend of the series 
before the application of ARIMA. ARIMA models, the 
acronym standing for Autoregressive Integrated Moving 
Average, can be used to analyze the prevalent rate of monthly 
precipitation [10]. Forecasting can also be used for maintaining 
real-time control (prediction) based on current measurements 
and anticipated future values of important process variables. To 
achieve the successful control, reasonably accurate predictions 
of future values are required. However, few research and 
published results have reported or even addressed the 
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forecasting accuracy of Box-Jenkins ARIMA models than 
other types of forecasts. The present work is based on an 
univariate model in which past relationships are used to 
forecast future cases because ARIMA models are univariate , 
that is, they are based on a single time series variable. Box and 
Jenkins have also developed multivariate modeling analysis 
method. However, in practice, even their univariate approach, 
sometimes, is not as well understood as the classic regression 
method. The goal of this work is to describe the basics of 
univariate Box Jenkins models in simple and layman terms. 
 Aims and objectives 
This Study aims at using time series analysis to model monthly 
cases of precipitation in Binza meteorological station with view 
to achieve the following objectives:  

 Testing the stationarity of the series; 
 Identification of the model that best fit the data; 
 Diagnostic procedure for the model; 
 Estimation of the model; 
 Forecasting.  

Scope and limitation of the study  
Kinshasa city is constantly subjected to climatic change with 
often serious socio-economic and environmental consequences. 
The climatic forecasts can help to minimize the climatic risk 
and to contribute to a sustainable development and thus to 
contribute to the reduction of poverty by improving (medicinal) 
food production. 
The Box Jenkins ARIMA model will help in rainfall 
forecasting or in tackling the rainfall prevalence rate since 
research has demonstrated that the Box-Jenkins (BJ) models 
are more accurate than other types of forecasts. The present 
study is limited to the analysis of monthly rainfall data from 
Binza meteorological station of Kinshasa during the period 
1970 to 2009.  
Study area 
The data were collected in Kinshasa, the capital of the 
Democratic Republic of Congo. Kinshasa is a city located 
between 4°18 ' and 4°25 'S latitude and between 15°19' and 
15°22'E longitude. Its average altitude is 360 m above sea level. 
Kinshasa is limited in the north by left bank of the Congo River, 
in the East by Bateke plate, in the South by the Lukaya River 
and in the West by the Mfuti River. This city covers a surface of 
9.965,2 square kilometer and is located in the low altitude 
climate, characterized by AW4 climate type according to the 
classification of Koppen. Considering the chorologic 
subdivisions of the Democratic Republic of Congo, Kinshasa is 
located in the Guineo-congolian region and belongs to the 
Congolo-zambezean transition sector [11]. 
 METHODOLOGY   
Time series models  
Autoregressive processes  
Assume that a current value of the series is linearly dependent 
upon its previous value, with some error. Where 𝜀𝑡 is a white 
noise time series [That is, the 𝜀𝑡  are a sequence of uncorrelated  
random  variables  (possibly  normally  distributed,  but not  
necessarily  normal) with mean 0 and variance σ2]. This model 
is called an autoregressive (AR) model, since X is regressed on 
itself.  

An autoregressive model (AR) of order p, an AR (p) can be 
expressed as: 
𝑋𝑡 = 𝐶 + 𝜑1𝑋𝑡−1 + 𝜑2𝑋𝑡−2 + ⋯+ 𝜑𝑝𝑋𝑡−𝑝 + 𝜀𝑡    
�1 − 𝜑𝐿 − 𝜑2𝐿2 − ⋯− 𝜑𝑝𝐿𝑝�𝑋𝑡 = 𝜀𝑡   
Φ(𝐿)𝑋𝑡 = 𝜀𝑡  
 
Moving average processes (MA)  
This is a process that the current value of the series is a 
weighted sum of past white noise terms, a model like this is 
called a moving average (MA) model, since X is expressed as a 
weighted average of past values of the white noise series. 
Considering 𝜀𝑡  (t = 1,2,3,...) as a white noise process, a 
sequence of independently and identically distributed (I, I, d) 
random variables is E(𝜀𝑡) = 0 and Var(𝜀𝑡) = σ2Ԑ . The q the 
order of MA model is given as: 
𝑋𝑡 = 𝑚 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯+ 𝜃𝑞𝜀𝑡−𝑞  
�1 + 𝜃1𝐿 + 𝜃2𝐿2 + ⋯+ 𝜃𝑞𝐿𝑞�𝜀𝑡 = 𝑋𝑡  (Lag form) 
θ(𝐿)𝜀𝑡 = 𝑋𝑡 
ARMA process (p, q) 
Considering that 𝜀𝑡  is the white noise and 𝑋𝑡  the (mixed) 
Autoregressive Moving Average process of order (p, q) 
denoted by ARMA (p, q).  Xt can be written as:  
𝑋𝑡 = 𝑐 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯+ 𝜙𝑝𝑋𝑡−𝑝 + 𝜃1𝑋𝑡−1 +
𝜃2𝑋𝑡−2 + ⋯+ 𝜃𝑝𝑋𝑡−𝑝 + 𝜀𝑡  
�1 − 𝜑𝐿 − 𝜑2𝐿2 − ⋯− 𝜑𝑝𝐿𝑝�𝑋𝑡 = �1 + 𝜃1𝐿 + 𝜃2𝐿2 + ⋯+
𝜃𝑞𝐿𝑞�𝜀𝑡  
Φ(𝐿)𝑋𝑡 = θ(𝐿)𝜀𝑡  
ARMA (p,q) model 
Where Φ  and  θ   are the polynomial of degree p and q 
respectively in L. 
 
Auto Regressive Integrated Moving Average ARIMA (p, d, 
q) process 
The process 𝑋𝑡 is expected to be an Autoregressive Integrated 
Moving Average process ARIMA (p, d, q) if its dth difference 
∇dX is an ARMA (p, q) process. 
An ARIMA (p, d, q) model can be written as follow:  
∆𝑋𝑡 = 𝑐 + 𝜙1Δ𝑋𝑡−1 + 𝜙2Δ𝑋𝑡−2 + ⋯+ 𝜙𝑝Δ𝑋𝑡−𝑝 +
𝜃1Δ𝜀𝑡−1 + 𝜃2Δ𝜀𝑡−2 + ⋯+ 𝜃𝑞Δ𝜀𝑡−𝑞  
Φ(𝐿)Δ𝑑𝑋𝑡 = 𝜃(𝐿)𝜀𝑡  
Φ(𝐿)(1 − L)𝑑𝑋𝑡 = 𝜃(𝐿)𝜀𝑡  
The covariances, γs, are known as autocovariances. One can 
find γ1, γ2, γ3, γ4¸γt,  .and so on. 
Here, γ0 = Cov(xt, xt-0) = Var(xt) = 𝜎2  

𝛾𝑡 =
∑ (𝑦𝑡−𝑦�)(𝑦𝑡−𝑗−𝑦�)𝑇
𝑗+1

∑ (𝑦𝑡−𝑦�)𝑇
𝑖−1

  

Partial autocorrelation functions (PACF)  
PACF measures the correlation between an observation k 
periods ago and the current observation, after controlling for 
observations at intermediate lags (i.e. all lags < k). PACF (k) = 
ACF (k) after controlling the effects of (xt-1,  . . , xt-k+1) 
xt, (xt-1, .. ,xt-k+1), xt-k 
An AR process has 
i. a geometrically decaying ACF 
ii. number of spikes of PACF = AR order 
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An MA process has 
i. Number of spikes of ACF = MA order 
 ii. a geometrically decaying PACF 
LAG operator 
Let X1, X2, . . . Xt be a time series. We define the lag operator L 
by; LXt = Xt-1 
If  Φ(L)  = 1- ϕL – ϕ2L2 - ... - ϕpLP 
Then An AR(p) is defined as 
(1- ϕL – ϕ2L2 - ... - ϕpLP ) xt = εt 
The BOX-JENKINS approach to model building  
 
This section outlines the procedures that Box and Jenkins 
recommend for constructing a univariate ARIMA model from a 
given time series. 
The Box-Jenkins approach to model building follows steps 
below. The model may then be used to forecast future values. 
i. Identification STAGE 
ii. Estimation STAGE 
iii. Diagnostic CHECKING STAGE 
 
The identification stage 
Identification is the stage at which a tentative model for the 
series is selected from the large family of candidate ARIMA (p, 
d, q) models. Clearly there are many possible combinations of 
the orders p, d, and q. Thus, the identification stage consists of 
specifying the AR, I, and MA orders (p, d, q). 
The estimation process 
Considering an ARIMA (p, d, q) process. A parametric model 
for the white noise is assumed, this parametric model will be 
that of Gaussian white noise, then the maximum likelihood is 
used. 
We rely on the prediction error decomposition.  That is, X1, . . . 
, Xn    have joint density  function; 
𝑓(𝑥1, . . 𝑥𝑛) = 𝑓(𝑥1)∏ 𝑓(𝑥𝑡|𝑓(𝑥1, … ; 𝑥𝑡−1)|𝑛

𝑡=2   
Suppose the conditional distribution of  𝑥𝑡  given   𝑥1, … ; 𝑥𝑡−1 
is normal with mean   t and variance 𝑃𝑡−1, and suppose that 
𝑥1~𝑁( 1, 𝑃0) 
Then for the log likelihood:  
−2𝑙𝑜𝑔𝐿 = ∑ log (2𝜋 + 𝑙𝑜𝑔𝑃𝑡−1 + (𝑥𝑡−𝑥̅𝑡)2

𝑃𝑡−1
𝑛
𝑡=1   

Here 𝑡   and  𝑃𝑡−1  are functions of the parameters 
𝜃1,… 𝜃𝑝,𝜙1,… 𝜙𝑞  and so maximum likelihood estimators can 
be found (numerically) by minimising −2 log L with respect to 
these parameters. 
The diagnostic checking stage 
Once  an  appropriate  model  had  been  entertained  and  its  
parameters  estimated,  the  Box-Jenkins  methodology  
required  examining  the  residuals  of  the  actual  values  minus  
those estimated through the model. If such residuals are 
random, it is assumed that the model is appropriate. If not, 
another model is entertained, its parameters estimated, and its 
residuals checked for randomness. 
 RESULTS AND DISCUSSION  
The figure 1 gives the evolution of monthly rainfall from the 
year 1970 to2001.  

 
Figure 1: Evolution of monthly rainfall from the year 1970 
to2001  
The time plot for monthly precipitations of data from Binza 
meteorological station shows that the data is not stationary and 
contains trend variation i.e.  the mean  and variance  are not 
constant  and in order  to apply  certain techniques  for  
identifying  the  model  for  the  data,  the  time  series  data  
must  undergo transformation to attain  stationarity. This plot 
revealed that rainfall is highly non-linear and complicated 
phenomena, which require mathematical modelling and 
simulation for its accurate prediction. The statistical method 
based on autoregressive integrated moving average (ARIMA) 
is the consistent model. 
Indeed, the series is regarded as Nonlinear and Non-Gaussian 
and can be used to evaluate the effectiveness of the nonlinear 
model. 
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Figure 2: Plot of autocorrelation function and time lags of mean 
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annual rainfall data  
From the graph of autocorrelation function, it is seen that the 
series is not stationary in mean and variance because it follows 
a damped cycle and the PACF suddenly cut off after p lags. The 
PACF also decline steadily, or follow a damped cycle in which 
tells us about. 
Therefore, the series needs to undergo transformation to attain 
stationarity. 
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Figure 3: Time plot of transformed data of precipitation and 
time lags of mean annual rainfall data  
The series attains stationarity after taking the first difference i.e 
the series has a constant mean and finite variance. 
Estimation of Model ARIMA  (5, 1, 1) 
The model 𝑋𝑡 = (1 − 𝐵)𝑄𝑠𝑡𝑑(𝑎,𝑚) is a ARIMA (p, d, q) avec 
p=5, d= 1, q=1 if and only if  one has:  
(1 − 𝑎𝑟1𝐵1 − 𝑎𝑟2𝐵2 − 𝑎𝑟3𝐵3 − 𝑎𝑟4𝐵4 − 𝑎𝑟5𝐵5)(1 −
𝐵)𝑄𝑠𝑡𝑑(𝑎,𝑚) = (1 −𝑚𝑎1𝐵1)𝜀𝑡 It is a question of estimating 
the various parameters  
 𝑎𝑟1,𝑎𝑟2,𝑎𝑟3,𝑎𝑟4,𝑎𝑟5,𝑚𝑎1.  
   After analysis, the results obtained of the software R is:   
Parameters ARIMA (5, 1,1)  
Table 1:  Estimation of the ARIMA model coefficients  

Coefficients ARIMA (5,1,1) 
ar1 0,0465 
ar2 -0,0052 
ar3 -0,00052 
ar4 -0,0134 
ar5 0,0229 
ma1 -1,000 

 
 The table 1 gives the ARIMA model coefficients after the 
analysis by the R software, we obtain the following equation: 

(1 − 0,0465𝐵1 + 0,0052𝐵2 + 0,00052𝐵3 + 0,0134𝐵4
− 0,0229𝐵5) 

(1 − 𝐵)𝑄𝑠𝑡𝑑(𝑎,𝑚) = (1 + 1,000𝐵1)𝜀𝑡  
 Analyze residues of the model 
It is a question of checking the assumptions of the white 
vibration.  After analysis with the R software of the residues 
obtained from this model, the curve describing the evolution, 
the car - correlogram and the partial car-correlogram of the 
residues   allow concluding that on the one hand, the chronicles 
of the residues 𝜀𝑡  are consistent and well stationary. And in 
addition, by observing the graph obtained by Ljung-Box test of 
this chronicle of the residues.  It can thus conclude that the 

assumption of the white vibration is preserved for the series of 
the residues.  The histogram of the residues takes the form of a 
normal distribution of Gauss. So, the process  𝑄𝑠𝑡𝑑(𝑎,𝑚) could 
be evaluated by ARIMA (5,1, 1) model according to the 
following: 
(1 − 0,0465𝐵1 + 0,0052𝐵2 + 0,00052𝐵3 + 0,0134𝐵4 −
0,0229𝐵5) = (1 − 𝐵)𝑄𝑠𝑡𝑑(𝑎,𝑚) = (1 −𝑚𝑎1𝐵1)𝜀𝑡 where is a 
white vibration. 

 
 Figure 4: Residues test of ARIMA (5,1,1) model 
The figure 4 above show well the normal pace of our 
adjustment which are white vibrations.  
Total reliability of the adjustments  
The average and relative quadratic errors related to this 
adjustment, are presented in the table below, the chronicle of 
the quantities of water extends up to 384 months: 
Table 2:  Errors of adjustment of the final model to the real 
quantities of water   

 Number of 
months   

Nash RMSE 
(mm) 

B (mm) 

Adjustment  
(from 1970 to 
2001 

384 0,9845 1,42 1,119 

The criterion of Nash [13] and the errors quadratic prove with 
sufficiency that the pace of the model marries well that of the 
quantities of real precipitations observed in Kinshasa.  
Total reliability of the forecasts  
The average and relative quadratic errors dependent has this 
adjustment, are presented in the table below, the chronicle of 
the quantities of water extends up to 12 months: 
Table 3: Errors of forecast 

 Number 
of month 

NASH RMSE 
(mm) 

B 
(mm) 

forecast  2002 12 0,63 0,65 0,19 
forecast  2003 12 0,57 0,58 0,12 
forecast  2004 12 0,58 1,42 0,26 
forecast  2005 12 0,66 0,55 0,07 
forecast 2006 12 0,72 0,47 0,05 
forecast 2007 12 0,62 0,63 0,007 
forecast  2008 12 0,83 0,34 0,065 
forecast  2009 12 0,82 0,33 3,29 

The criterion of Nash and the quadratic errors show with 
sufficiency that in a total way the various forecasts conducted 
by the model are satisfactory. 
  
Forecast cases of precipitation 
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Forecasts of future for precipitation cases in Binza are of 
particular interest. We may now use the final form of the 
best-fit ARIMA model for the time series to estimate future 

cases. The forecasted case for the next three years is displayed 
below. 

 
Table 4: Real and predicted rainfall data in Binza meteorological station 

 
This table gives the rainfall predictions from the year 2002 to 2009 as estimated by ARIMA (5,1,1) model. The results show that 
the event-based estimation approach yields better forecasts. 
 
CONCLUSION   
The aim of the present study was to test a model of simulation 
on the monthly series of precipitations data from the Binza 
meteorological station of Kinshasa/Democratic Republic of the 
Congo. After the stationnarization of the series, we applied an 
Auto-Regressive Integrated Moving Average (ARIMA) model 
into the starting series. The criterion of Ljung-Box enabled us 
to establish the following equation (1 − 0,0465𝐵1 +
0,0052𝐵2 + 0,00052𝐵3 + 0,0134𝐵4 − 0,0229𝐵5) =
(1 − 𝐵)𝑄𝑠𝑡𝑑(𝑎,𝑚) = (1 −𝑚𝑎1𝐵1)𝜀𝑡.   It can be conclude that 
the use of ARIMA model as tool for predicting rainfall could 
help in agricultural research development and in predicting the 
best period for the harvest of medicinal plant samples for 
phytotherapy (the quality/quantity of secondary metabolites 
and bioactivity). This model also makes it possible to predict 
the implication of rainfall on the lifestyle of the Kinshasa 
inhabitants. 
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