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ABSTRACT:  
The present work deals with the blood flow through a composite stenosis assuming that flowing blood is represented by a two layered 
model consisting of a core region of suspension of all the erythrocyte assumed to be a particle-fluid suspension (i.e., a suspension of 
all erythrocyte in plasma) surrounded by a peripheral layer of plasma (Newtonian fluid). The expression for the flow characteristics, 
namely, the impedance, the wall shear stress and the shear stress at the stenosis throat has been derived. Discussions are made from a 
physiological point of view with the help of graph. 
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INTRODUCTION 
There has been growing interest in studying blood rheology and 
blood flow. Dintenfass (1977) reported that rheologic and fluid 
dynamic properties of blood and its flow play important role in 
the fundamental understanding, diagnosis and treatment of many 
cardiovascular, cerebrovascular and arterial disease. Circulatory 
disorders are known to be responsible for over seventy-five 
percent of all deaths and stenosis is one of the frequently 
occurring cardiovascular diseases. The narrowing of anybody 
passage, tube or orifice in a living mammal is known as stenosis 
or arteriosclerosis Young (1979). It is an abnormal and unnatural 
growth that develops at various locations of the cardiovascular 
systems under diseased conditions and occasionally results in to 
serious consequences (cerebral strokes, myocardial infarction, 
angina pectoris, cardiac arrests, etc.). Probably the deposits of the 
cholesterol, fatty substances, cellular waste products, calcium 
and fibrin in the inner lining of the of an artery, etc. are 
responsible for the frequently occurring disease. Irrespective of 
the cause, it is well known that once stenosis has developed, it 
brings about the significant changes in the flow field. In the 
region of narrowing arterial constriction, the flow accelerates and 
consequently the velocity gradient near the wall region is steeper 
due to the increased core velocity resulting in relatively large 
shear stress on the wall even for a mild stenosis. The knowledge 
that the hemodynamic factors play an important role in the 
genesis and proliferation of the disease has attracted the 
investigators including Mann et al. (1938), Young ( 1979), 
Shukla et al. (1980), Sarkar and Jayaraman (1998), Pralhad and 
Schultz (2004), Liu et al. (2004), Srivastava et al. (2012), 
Ponalagusamy (2007), Mekheimer and El-Kot (2008), Joshi et al. 
(2009), Singh et al. (2010), Medhavi et al. (2012), Srivastav et al. 
(2013, 2014a, 2014b, 2015, 2016) and many others.  
It has been observed that the whole blood, being predominantly a 
suspension of erythrocytes in plasma, behaves as a non-
Newtonian fluid at low shear rates in microvessel, Whitemore 
(1963). 
Bugliarello and Sevilla (1970), Cokelet (1972) and Thurston 

(1989) have shown experimentally that for blood flowing 
through small vessels, there is cell-free plasma (Newtonian 
viscous fluid) layer and a core region of suspension of all the 
erythrocytes. Haynes (1960) presented a two-fluid model of 
blood flow consisting of a core region of suspension of all the 
erythrocytes as a homogeneous Newtonian viscous fluid and a 
cell-free plasma layer as a Newtonian fluid of constant viscosity 
(equal to the  viscosity of water). Skalak (1972) concluded that 
an accurate description of the blood flow in small vessels 
requires the consideration of erythrocytes as discrete particles. 
An examination of viscometric data (Bugliearello et al., 1965; 
Chein et al., 1965; Rand et al., 1964) suggests that non-
Newtonian behavior of blood increases rapidly, when 
haematocrit rises above 20%, possibly reaching a maximum at 
between 40-70%. Srivastava and Srivastava (1983) observed that 

the individuality of red cells (of diameter 8 m ) is significant in 

such a large vessels with diameter up to hundred cells diameter 
and concluded that blood can be suitably represented by a 
macroscopic two-phase model (i.e., a suspension of red cells in 

plasma) in small vessels (of diameter 2400 m ). A survey of 

the literature on arteriosclerotic development indicates that the 
studies in the literature have been conducted mainly for single 
symmetric and non-symmetric stenosis. The stenosis may 
develop in series (multiple stenoses) or may be of irregular 
shapes or overlapping or of composite in nature. Chakravarty and 
Mandal (1994) studied the effects of an overlapping stenosis on 
arterial flow problem of blood. 
Keeping these in view, in this paper an effort is made to study the 
effects of composite stenosis on the flow characteristics taking 
into account that flowing blood is to be represented, as two-
layered model consisting of a core region of suspension of all the 
erythrocyte assumed to be a particle-fluid suspension (i.e., a 
suspension of all erythrocyte in plasma) surrounded by a 
peripheral layer of plasma (Newtonian fluid) in arteries. The 
artery length is considered large enough as compared to its radius 
so that the entrance, end and special wall effects can be 
neglected. 
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2. Formulation of the problem 
  Consider the axisymmetric flow of blood in an artery of circular 
cross-section of radius R with an axisymmetric composite 
stenosis. Assuming that the flowing blood is   represented by a 
two-layered suspension model consisting of a central layer of 
suspension of all the erythrocytes (assumed to be a suspension of 

red cells in plasma) of radius 1R  and a peripheral layer of 

plasma (a Newtonian viscous fluid) of thickness (R- 1R ).The 

stenosis geometry and the shape of the central layer, assumed to 
be manifested in the arterial segment are described in Fig.1 as 
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        Fig.1 The geometry of a composite stenosis.                                                                                                     
        
  
where R0 is the radius of the arterial segment in the non-stenotic 
region, R (z) is the radius of the stenosed portion; L is tube 
length, L0 is the stenosis length and d indicates the location of the 

stenosis,   is the ratio of the central core radius of the tube 

radius in the unobstructed region and ) ,( 1δδ  are the maximum 

height of stenosis and bulging of the interface at z=d+L0/2. 
 

 
                The equations describing a two-layered suspension 
blood flow (Srivastava, 2007) in the case of a mild stenosis with 

additional conditions; 1,<<δ/R0 1)<</R(2Re 0 and 

2R0/L0~O(1), are given as  
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where r is the radial coordinate measured normal to the artery 
axis and (Re, p) denotes (the tube Reynolds number, pressure), 
(uf, up) are the axial velocity of (fluid, particle) phases in the core 

region )0( 1Rr  , ( 0μ , uo) are (viscosity, axial velocity) of 

fluid (plasma) in the peripheral region ( RrR 1
), SS μCμ )(  

is the suspension viscosity (apparent or effective viscosity) in the 
core region, C denotes the constant volume fraction density of 
the particles (called haematocrit),  S is the drag coefficient of 
interaction exerted by one phase on the other and the subscripts f 
and p denote the quantities associated with the plasma (fluid) and 
erythrocyte (particle) phases, respectively. The limitations and 
the usefulness of the present theoretical model are discussed 
briefly in Srivastava (2007). The expressions for the viscosity of 

suspension, sμ  and the drag coefficient of interaction, S for the 

present study are selected (Srivastava 2015) as  
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where T is measured in absolute scale of the temperature (K), oμ  

is the constant plasma viscosity and ao is the radius of an 
erythrocyte. The imperical relation for the suspension viscosity 
suggested by Charm and Kurland (1974) is found to be 
reasonable accurate up to C=0.6 (60% haematocrit). 
 
               The boundary conditions are the standard no slip 
conditions of velocities and the shear stresses at the tube wall and 
the interface are stated as 
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 where r/uμτ oop   and fτ = (1-C) sμ r/u f   are the shear 

stresses of the peripheral and central layers, respectively. 
 

3. Analysis 
  The expressions for velocities, u0, uf  and up obtained as the 
solutions of Eqs. (4)-(6), subject to the boundary conditions Eqs. 
(10)-(12), are given as  
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The flow flux, Q is now calculated as 
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With ,)1(8 2
00 /SRμCCβ  a non-dimensional suspension 

parameter.  
 
Following now report of (Srivastava, 2007) and using the fact 
that the total flux is equal to the sum of the fluxes across the two 
regions (peripheral and core), one determines the relations:  R1= 

α R and αδδ 1 . In view of these relations, the pressure drop, 

p (= p at z = 0,   -p at z = L) across the stenosis between the 
sections z = 0 and z = L, is calculated from Equ. (16)  as  
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               The first, second and fourth integrals in the expression 

for ψ  obtained above are straight forward whereas third integral 

evaluated numerically using computer programming. Using now 
the definitions from Srivastava (2015), one obtains the final 
expressions for the impedance (flow resistance), λ , the wall 

shear stress, wτ  and the shear stress at the stenosis throat, sτ  are 

obtained in their non-dimensional form as: 
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0λ  and 0τ  are the impedance and shear stress in a normal (no 

stenosis) artery for a Newtonian fluid ( i.e., C = 0 ), and 

),τ sw   ,λ(  are (impedance, wall shear stress, shear stress at the 

stenosis throat) in their dimensional form. 

 

4. Numerical result and discussion 
 
To have a quantitative estimate of the various parameters 
involved, computer programs are developed to evaluate the 
analytical result at a temperature of 37

0
C in an artery of radius R0 

=0.1cm and for various other parameter values are selected 
(Young, 1968; Srivastava et al., 2009 a, b) as d(cm)=0; L0(cm)=1; 

L(cm)=1, 2, 5; 
0R =0, 0.05, 0.10, 0.15, 0.20. Some of the 

critical results obtained are displayed graphically in Figs. 3-8. In 
view of the fact that the peripheral layer thickness strongly 
depends on core suspension viscosity (i.e., on erythrocyte 
concentration; Bugliarello and Sevilla 1970, Srivastava 2007) we 

choose 2ao (erythrocyte diameter) = 8 μm  , the peripheral layer 

thickness,  )()( Cm  6.18, 4.67, 3.60, 3.12, 2.58, 2.18 

corresponding to the haematocrit, C = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 

respectively Haynes (1960). The value of parameter  is then 

calculated from the relation
0/1 R  . It is to note that the 

present analysis corresponds the case of a two-layered blood 

flow i.e., 1 . 
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The flow characteristics impedance   increases with 

haematocrit, C as well as with the stenosis height, 
0R  (Fig. 3). 

 

The flow characteristics, impedance,   decreases with 

increasing tube length, L which in terns implies that impedance, 

  increases with stenosis length, 
0R (Fig. 4). 

 
The impedance, increases steeply with haematocrit, C for any 

given stenosis height, 
0R (Fig. 5). At any axial distance , the 

wall shear stress in stenotic region, 
w increases rapidly in 

upstream of the stenosis throat and attains its peak magnitude at 

5.00 LZ , it then decreases rapidly in downstream of the  

throat and attains its approached value (i.e., 00 LZ ) at the end 

of the constriction profile located at 10 LZ  (Fig. 6).  

The shear stress at the stenosis throat, 
S increases with the 

haematocrit, C and stenosis height, 
0R  (Figs. 7 and 8). 

However, the shear stress at the stenosis throat, 
S assumes 

lower magnitude in the two-layered analysis than its 
corresponding magnitude in single-layered analysis for any given 
haematocrit C. An inspection of Figs. 3-5, reveals that the shear 

stress at stenosis throat, 
S  possesses the characteristics similar 

to that of the flow resistance, with respect to any parameter. The 

magnitude of the shear stress, 
S  is not higher than the 

corresponding magnitude of the impedance,  for given 

parameters. 
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CONCLUSIONS 
To observe the effects of composite stenosis on blood flow 
characteristics taking into account that flowing blood is to be 
represented as two-layered model has been used to discuss. The 
blood flow characteristics (the flow resistance, the wall shear 
stress in the stenotic region and the shear stress at the stenosis 
throat) increase with the haematocrit as well as with the stenosis 
size (Length and height). The shear stress at the stenosis throat 
possesses the characteristics similar to that of the impedance with 
respect to any parameter. 
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