Design of a Material Handling Equipment: Belt Conveyor System for Crushed Limestone Using 3 roll Idlers

I. A. Daniyan *, A. O. Adeodu and O. M. Dada
Department of Mechanical & Mechatronics Engineering, Afe Babalola University.

*Corresponding author: I. A. Daniyan
Department of Mechanical & Mechatronics Engineering,
Afe Babalola University,
Ado Ekiti, Ekiti State, Nigeria.
E-mail: afolabiilesanmi@yahoo.com
Received: January 6, 2014, Accepted: January 14, 2014, Published: January 16, 2014.

ABSTRACT
In the process or manufacturing industry, raw materials and products need to be transported from one manufacturing stage to another. Material handling equipment are designed such that they facilitate easy, cheap, fast and safe loading and unloading with least human interference. For instance, belt conveyor system can be employed for easy handling of materials beyond human capacity in terms of weight and height. This paper discusses the design calculations and considerations of belt conveyor system for limestone using 3 rolls idlers, in terms of size, length, capacity and speed, roller diameter, power and tension, idler spacing, type of drive unit, diameter, location and arrangement of pulley, angle and axis of rotation, control mode, intended application, product to be handled as well as its maximum loading capacity in order ensure fast, continuous and efficient movement of crushed limestone while avoiding halt or fatalities during loading and unloading. The successful completion of this research work has generated design data for industrial uses in the development of an automated belt conveyor system which is fast, safe and efficient.

Keyword: Belt Conveyor system, Idler, Loading, Material handling equipment, Unloading.

INTRODUCTION
Different methods such as fork lifting, use of bucket elevators, conveyors systems, crane, etc. has been identified for lifting or transporting bulk materials or products from one place to another in the manufacturing industries depending on the speed of handling, height of transportation, nature, quantity, size and weight of materials to be transported. However, occasional halt or fatalities encountered while loading and unloading in the industry are source of concern. The objective of this research work is to provide design data base for the development of a reliable and efficient belt conveyor system that will reduce cost and enhance productivity while simultaneously reducing dangers to workers operating them. Conveyor system is a mechanical system used in moving materials from one place to another and finds application in most processing and manufacturing industries such as: chemical, mechanical, automotive, mineral, pharmaceutical, electronics etc.

It is easier, safer, faster, more efficient and cheaper to transport materials from one processing stage to another with the aid of material handling equipment devoid of manual handling. Handling of materials which is an important factor in manufacturing is an integral part of facilities design and the efficiency of material handling equipment add to the performance level of a firm [1]. Conveyor systems are durable and reliable in materials transportation and warehousing. Based on different principles of operation, there are different conveyor systems namely: gravity, belt, screw, bucket, vibrating, pneumatic/hydraulic [2], chain, spiral, grain conveyor systems etc. The choice however depends on the volume to be transported, speed of transportation, size and weight of materials to be transported, height or distance of transportation, nature of material, method of production employed. Material handling equipment ranges from those that are operated manually to semi-automatic systems and to the ones with high degree of automation. The degree of automation however depends on handling requirements.

Material handling involves movement of material in a manufacturing section. It includes loading, moving and unloading of materials from one stage of manufacturing process to another. A belt conveyor consists of an endless and flexible belt of high strength with two end pulleys (driver and driven) at fixed positions supported by rollers. In this work, 3 roll idlers are required for adequate support of materials transported and protection of the belt along its length. Pulleys are used for providing the drive to the belt through a drive unit gear box powered by an electric motor. It also helps in maintaining the proper tension to the belt. The drive imparts power to one or more pulleys to move the belt and its loads. Materials are transported over the required distance as a result of friction generated between the roller surface and the moving belt set in motion by a rotating
pulley (drive pulley). The other pulley (driven or idler pulley) acts as a wheel around which the material rotates and returns in a continuous process. Continuous processes are characterized by non-stop motion of bulk or unit loads along a path without halt for loading and unloading [3].

The peculiarities of a belt conveyor is that it is easy and cheap to maintain, it has high loading and unloading capacity and can transport dense materials economically and at very high efficiency over long distance allowing relative movement of material [4]. Belt conveyor can also be used for diverse materials: abrasive, wet, dry, sticky or dirty material. Only a single roller needs to be powered by driver pulley and the roller will constantly spin causing the materials to be propelled by the driving roller. Material handling equipment such as belt conveyors are designed to load and unload materials from one stage of processing to another in the fastest, smoothest, most judicious, safest, and most economical way with minimum spillage. Belt conveyors are employed for conveying various bulk and unit loads along horizontal or slightly inclined paths and for transporting articles between various operations in production flow lines [3]. A belt conveyor can be horizontal, incline or decline or combination of all. With the aid of pneumatic cylinder, the height of the conveyor is adjustable so as to load and unload at different height.

The design of belt conveyor system involves determination of the correct dimension of the belt conveyor components and other critical parameter values so as to ensure optimum efficiency during loading and unloading conditions. Some of the components are: Conveyor belt, motor, pulley and idlers, rollers, pneumatic cylinder etc.

The design of a belt conveyor system takes into account the followings:

1. Dimension, capacity and speed
2. Roller diameter
3. Belt power and tension
4. Idler spacing
5. Pulley diameter
6. Motor
7. Type of drive unit
8. Location and arrangement of pulley
9. Control mode
10. Intended application
11. Maximum loading capacity

Belt Dimension, Capacity and Speed

The diameter of the driver and driven pulley is determined by the type and dimension of conveyor belting. The diameter of the pulley must be designed such that it does not place undue stress on the belt. The length of a belt conveyor in metres is the length from the centre of pulley parallel to belt line. Belt length is dependent on both the pulley diameters and centre distances [4].

\[v = d \times \pi \]

Where:

- \(v \) = Belt speed;
- \(d \) = diameters of rollers; and
- \(\pi \) = pi

Capacity is the product of speed and belt cross sectional area.

Generally, belt capacity (kg/sec) is given as:

\[B.C = 3.6 \times A \times \rho \times V \]

Where:

- \(A \) = belt sectional area (m²);
- \(\rho \) = material density (kg/m³); and
- \(V \) = belt speed (m/s)

The mass of material \(M_m \) (live load) per metre (kg/m) loaded on a belt conveyor is given as:

\[M_m = \frac{C}{3.6 \times V} \]

Where:

- \(C \) = Conveyor capacity (355 tonnes/hr); and
- \(V \) = belt speed (1.25 m/s).

\[M_m = 78.88 \text{ kg}. \]
The magnitude of belt speed \(V \) (m/s) can be determined from equations 1, 2, 3 or 6 and can as well be gotten from the catalogue for standard belt. Belt speed \(v \) (m/s) depends on loading, discharge and transfer arrangement, maintenance standards, lump size [5]. The determination of belt width is largely a function of the quantity of conveyed material which is indicated by the design of the conveying belt [6]. The value of belt capacity from equation 2 determines the value of lump size factor.

Another important factor in determining the belt capacity is the troughing angle. Belts are troughed to allow the conveyor load and transport materials. As trough angle increases, more materials can be transported. For standard 3 idler rollers of equal length the most common trough angle is 350. The belt width must be wide enough to deal with the material lump size.

Angle of surcharge is one of the most important characteristics in determining the carrying capacity as it directly governs the cross sectional area of material in the belt and hence the volume being conveyed [5]. The surcharge angle depends on friction between the belt and the material and how the material is loaded. The steeper the conveyor, greater the belt capacity and the lesser the surcharge angle.

Since the limestone to be handled is abrasive, heavy, with specific gravity between 1.5-2 tonnes/m3 and lump size up to 75 mm, a belt of minimum width of 1200 mm and speed of 1.25 m/s is preferred according to design values [7]. For 3 equal roll idlers with surcharge angle of 250 and troughing angle of 350 the capacity factor is 1.08 [5]. The capacity in tonnes/hr of a conveyor consisting of 3 equal roll idler is given as

\[
C = \frac{C_T \times \rho \times C_f \times V}{1000}
\]

(4)

Where:
- \(C \)=Capacity in tonnes/hr of a belt conveyor consisting of 3 equal roll idler;
- \(C_T \)=Capacity of troughed belts for 3 roll equal length idler (175);
- \(\rho \)=material density in kg/m3 (1500);
- \(C_f \)=Capacity factor (1.08); and
- \(V \)=Belt speed in m/s (1.25)

From equation 2.4, the overall capacity of the belt conveyor consisting of 3 equal roll idler is 355 tonnes/hr.

For belts running horizontally and loaded evenly, the volumetric belt load also is given as:

\[
V_L = \frac{L_C}{W}
\]

(5)

Where:
- \(V_L \)=Volumetric belt load (m³/hr);
- \(L_C \)=Load capacity of the belt conveyor (tonnes/hr); and
- \(W \)=Specific Weight of the conveyed material (tonnes/m³)

As belt tend to wander a bit in operation, the overall face width of the pulley should exceed the belt width by 150 mm [6], if serious edge damage is to be avoided. For haulage efficiency, conveyors should be operated fully loaded at the maximum recommended speed and capacity.

Roller diameter

The roller support belt and facilitates easy as well as free rotation of the belt conveyor in all direction. The correct choice of roller diameter must take into consideration the belt width [7]. The relationship between the maximum belt speed, roller diameter and the relative revolution per minute is given as:

\[
n = \frac{V \times 1000 \times 60}{D \times \Pi}
\]

(6)

Where:
- \(n \)= no of revolution per minute;
- \(D \)= roller diameter (mm); and
- \(V \)= belt speed (m/s)

The belt width is designed as 1200 mm, the belt speed is 1.25 m/s, the roller diameter is therefore designed as 108 mm [7].

From equation 6, the no of revolution per minute \(n \)= 220 rpm.

The conveyor length= \(\frac{\text{horizontal distance}}{\text{inclination angle} \theta} \)

(7)

The inclination angle is 10⁰, the conveyor length is 100 m, and the conveyor height is 10 m.

Belt basic length= \(2 \times \text{length along conveying route} \)

(8)

From equation 8, basic belt length = \(2 \times 100 = 200 \) m

The roll diameter for belt is given as

\[
D = \sqrt{d^2 + \left(0.001273 \times L \times G \right)}
\]

(9)

Where:
- \(D \)= Overall diameter (m);
- \(D \)= core diameter (m);
- \(L \)= Belt length (m); and
- \(G \)= Belt Thickness (mm)

The length of a belt on roll is given as:

\[
L = \left(d + \left(\frac{D-d}{2}\right) \times \pi \times N \right)
\]

(10)

Or

\[
L = H \times N \times \pi
\]

(11)

Where:
- \(D \)=Outside diameter of the roll (m);
- \(d \)=diameter of the roll centre (m);
- \(N \)= no of wraps of the roll centre (m);
- \(H \)= Height of the centre core (m); and
- \(\pi \)= 3.1416
Belt Power and Tensions

The longer the length of the belt, the more the power required for the conveyor and the higher the vertical distance of the lift, the higher the magnitude of power required.

The power \(P_p \) (kW) at drive pulley drum is

\[
P_p = \frac{F_U \times V}{1000} \tag{12}
\]

Where:

- \(F_U \): Total tangential force at the periphery of the drive pulley (N);
- \(V \): Belt speed (1.25 m/sec); and

\[
F_U = \frac{P_p \times 1000}{V} \tag{13}
\]

Power required for the conveyor to produce lift can also be calculated as:

\[
P = \frac{C \times L \times 3.75}{1000} \tag{14}
\]

Where:

- \(P \): power required for conveyor (kW);
- \(C \): conveyor capacity (355 tonnes/hr) = (98.6 kg/sec); and
- \(L \): Lift (10 m)

\(P = 3.7 \) kW.

The belt of the conveyor always experience tensile load due to the rotation of the electric drive, weight of the conveyed materials and due to the idlers. The belt tension must be great enough to prevent slippage between the drive pulley and the belt [8]. Belt tension at steady state is given as:

\[
T_{ss} = 1.37 \times f \times L \times g[2 \times M_i + (2 \times M_s + M_m) \cos(\theta)] + (H \times g \times M_m) \tag{15}
\]

Where:

- \(T_{ss} \): Belt tension at steady state (N);
- \(f \): Coefficient of friction (0.02);
- \(L \): Conveyor length (100 m);
- \(g \): Acceleration due to gravity (9.81 m/sec\(^2\));
- \(M_i \): Load due to the idlers (570 kg);
- \(M_s \): Load due to belt (577.5 kg);
- \(M_m \): Load due to conveyed materials (78.88 kg);
- \(\theta \): Inclination angle of the conveyor (10\(^\circ\)); and
- \(H \): Vertical height of the conveyor (10 m).

\(T_{ss} = 71 \) KN

During the start of the conveyor system, the tension in the belt will be much higher than the steady state. The belt tension while starting is

\[
T_s = T_{ss} \times K_S \tag{16}
\]

Where:

- \(T_s \): Belt tension while starting (N);
- \(T_{ss} \): Belt tension at the steady state (71KN); and
- \(K_S \): Start up factor (1.08).

\(T_s = 76.68 \) KN

For inclined belt, the drive at head pulley is:

\[
T_{max} = T_e + T_2 \tag{17}
\]

while the drive at tail pulley is

\[
T_{max} = T_e + T_2 \tag{18}
\]

OR

\[
T_{max} = T_e + T_2 + \text{belt tension-return side friction} \tag{19}
\]

\(T_e \) is effective tension (KN)

\[
T_e = \text{total empty friction + load friction + load slope tension} \tag{20}
\]

Total empty friction = \(F_e \times (L + t_f) \times W \times 9.81 \) \(\times 10^{-3} \)

\[
\text{(21)}
\]

Load Friction = \(F_e \times (L + t_f) \times \frac{C}{3.6 \times V} \times 9.81 \times 10^{-3} \)

\[
\text{(22)}
\]

Return side tension = \(F_e \times W \times L \times 0.4 \times 9.81 \times 10^{-3} \)

\[
\text{(23)}
\]

Load slope tension = \(\frac{C \times H}{3.6 \times V} \times 9.81 \times 10^{-3} \)

\[
\text{(24)}
\]

Where:

- \(F_e \): Equipment friction factor (0.0225);
- \(C \): Belt Conveyor capacity (355 tonnes/hr);
- \(V \): Belt speed (1.25 m/sec);
- \(t_f \): Terminal friction constant (60 m);
- \(W \): Weight of material and belt in (656.38 kg/m);
- \(L \): Length of conveyor (100 m); and
- \(H \): Height of conveyor (10 m)

From equation 21, total empty friction is 965.86 N.

From equation 22, load friction is 163.24 N.

From equation 23, return side tension is 5.795N

From equation 24, load slope tension is 12.09 N
The effective tension T_e according to equation 20 is $965.86 + 163.24 + 12.09 = 1.141$ KN.

For horizontal and elevating conveyors, the terminal friction constant t_f, expressed in metres of centre to centre distance up to 300 m centre = 60 m

And the equipment friction factor $F_e = 0.0225$ [5].

Maximum tension (T_{max}) is the belt tension at the point where the conveyor experiences the greatest stress. T_{max} can be found at different sections in the belt.

$T_{max} = (1 + K) \times T$ \hspace{1cm} (25)

Where:

K: Drive factor

T: Tension at a particular point (KN)

However, unitary maximum tension T_{Um} (N/mm) of the belt is defined as:

$T_{Um} = \frac{T_{max} \times 10}{b}$ \hspace{1cm} (26)

Where:

T_{max}: Tension at the highest stress point of the belt or steady state tension in a conveyor (71 KN); and

b: Belt width (1200 mm).

The belt power (kW) is given as

$P_b = T_e \times V$ \hspace{1cm} (27)

The effective tension (1.141 KN)

V: Belt speed (1.25 m/sec)

P_b: 1.43 kW

Belt tension of a conveyor system is of a varying value along the system flight and is governed by the following influencing factors: length and track of the system, number and arrangement of pulley, characteristics of the driving and braking equipment, type and location of the belt take up devices and operating and loading state of the system [9].

Idler Spacing

Idlers are installed at graduated spacing to ensure that the sag as a result of load varies inversely with the tension in the belt. Live load is calculated as 78.88 kg from equation 3.3

Total live load (kg) $T_L = L_C \times L_C$ \hspace{1cm} (28)

LC = conveyor length (100 m)

TL = 7.88 KN

Dead load is the load consisting of weight of roller, belt and drive pulley.

The idler spacing at any point can be obtained from:

$I_s = \frac{8 \times T \times S_g}{M \rho \times 9.81 e^{-3}}$ \hspace{1cm} (29)

Where:

$M \rho$: Mass of belt and live load (656.38 kg/m);

T: Tension at a particular point (KN); and

S_g: Percentage of the idler spacing (0.01)

An idler spacing of 1.0 m is recommended for a belt conveyor system conveying a material of 1500 kg/m3 and on a belt width of 1200 mm [6].

Pulley Diameter

Pulleys are manufactured in a wide range of sizes. The selection of pulley takes into account the wrap angle (1800), belt speed (1.5 m/sec), method of belt strain, belt tension T, belt width (1200 mm) and type of splice of the conveyor belt. The pulley diameter is obtained from standard value from the catalogue. Once the pulley diameter is determined, the size of the coupling can also be decided from the catalogue.

Pulley wraps length at terminals = $2 \times \Pi \times D$ \hspace{1cm} (30)

Where:

D: Diameter of pulley (800 mm) [6].

Pulley wraps length at terminals = 5 m.

Drive pulley can be lagged to increase friction and improve transmission between belt and pulley [10]. Elastic lagging helps to keep pulley clean so as to increase duration of friction while grooved lagging helps in removal of moisture so as to improve friction.

The effective pull F_U (N) is given as

$F_U = \mu_T \times g(M_m + \frac{M_b}{2}) + \mu_R \times g \left(\frac{M_b}{2} + M_i \right)$ \hspace{1cm} (31)

Where:

μ_T: Coefficient of friction with support rollers (0.033)

μ_R: Coefficient of friction with skid plate

g: Acceleration due to gravity (9.8 m/s2)

M_m: Total load of conveyed materials (78.88 kg)

M_b: Mass of belt (577.5 kg)

M_i: Mass of roll idlers (570 kg)

F_U: 2.9 KN

Recall from equation 9, the power P_b (kW) at drive pulley drum is

$P_b = \left(\frac{F_U \times V}{1000} \right)$ \hspace{1cm} (12)

Where:

P_b: Total tangential force at the periphery of the drive pulley (2.9 KN);

V: Belt speed (1.25 m/sec); and

From equation 3.9, P_b = 3.62 kW.

The acceleration of the conveyor belt is given as:

$A = \frac{T_S - T_{SS}}{L \times (2 \times M_i + 2 \times M_b + M_m)}$ \hspace{1cm} (32)

Where:

T_S: Belt tension while starting (76.68 N);

T_{SS}: Belt tension at the steady state (71 N);

L: Conveyor length (100 m);

M_i: Load due to the idlers (570 kg/m);

M_b: Load due to belt (577.5 kg/m);

M_m: Load due to conveyed materials (78.8 kg/m);

The acceleration A (m/sec2) of the conveyor belt is $2.39e^{-5}$ m/sec2.

Belt breaking strength B_{bs} (N) parameter decides the selection of the conveyor belt. Belt breaking strength can be calculated as:

$B_{bs} = \frac{C_T \times P_b}{C_T \times V}$ \hspace{1cm} (33)

Where:
Friction factor (15);
Breaking strength loss factor (0.75);
Power at drive pulley (3.63 kW); and
Belt speed (1.25 m/sec)
The breaking strength is 58.08

Motor
The minimum motor power for sizing of the motor is
\[P_{\text{min}} = \frac{P}{\eta} \]
(34)
Where:
\[P_{\text{min}} = \text{Minimum motor power (kW)}; \]
\[P = \text{Power at drive pulley (3.62 kW)}; \]
\[\eta = \text{Efficiency of the reduction gear (0.9)} \]
\[P_{\text{min}} = 4.022 \text{ kW}. \]
The next standard motor greater than \(P_{\text{min}} \) will be sufficient [11], [12].
A standard motor of 5.0 kW is chosen.

Alternatively,
To determine the motor horse power \(hp_{\text{min}} \):
\[hp_{\text{min}} = \frac{HP_{\text{req}}}{\eta} \]
(35)
Where:
\[H_{\text{req}} = HP_e + HP_m + HP_j \]
(36)
Where:
\(HP_e \) = Horse power required to drive the conveyor empty
\(HP_m \) = Horse power required to move material horizontally
\(HP_j \) = Horse power required to elevate material.

Torsional moment is given as
\[M_i = \frac{1}{2} \times D \times (F + \mu Wg) \]
(37)
Where:
\(D \) = Diameter of pulley (m);
\(F \) = Force (N);
\(\mu \) = Coefficient of friction;
\(W \) = Weight of material and Belt (kg/m); and
\(g \) = Acceleration due to gravity (m/s²)
The number of revolution per minute (n) of the motor is given as
\[n = \frac{9550 \times 1000 \times P}{M_i} \]
(38)
Where:
\(P \) = Power (kW); and
\(M_i \) = Torsional moment (N/mm)

The cycle time of conveyor is given as:
\[C_i = \frac{2L}{V} \]
(39)
Where:
\(L \) = Length of conveyor (100 m); and
\(V \) = Belt speed (1.25 m/sec)
The cycle time of the conveyor is 160 s⁻¹

Torque (KNm) is calculated as:
\[T = \frac{9.55 \times P}{P \text{ulley rpm}} \]
(40)
Where: \(P \) = power required for the conveyor (3.7 kW)
Pulley rpm = 26.2
\(T = 1.35 KNm \)

Shaft Design
Shaft design consists primarily of determination of the correct shaft diameter that will ensure satisfactory rigidity and strength when the shaft is transmitting motion under different operating and loading conditions. The values of belt width and pulley diameter helps in selecting the size of shaft diameter from different conveyors hand book.

Control
Compact Programmable Controllers otherwise known as application controllers can be used for the control of the system. These controllers can be used for time control and supervisory functions such as: conveyor speed control, speed control of individual drives, speed and belt slip control, load equilibration between two driving drum and speed difference control between two motors on one driving drum [13].

RESULTS
The followings are designed values were obtained for belt conveyor system for limestone using 3 roll idlers.

<table>
<thead>
<tr>
<th>Table 1: Design Values for Belt Conveyor System</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/N</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>21.</td>
</tr>
<tr>
<td>22.</td>
</tr>
<tr>
<td>23.</td>
</tr>
<tr>
<td>24.</td>
</tr>
<tr>
<td>25.</td>
</tr>
<tr>
<td>26.</td>
</tr>
<tr>
<td>27.</td>
</tr>
<tr>
<td>28.</td>
</tr>
<tr>
<td>29.</td>
</tr>
<tr>
<td>30.</td>
</tr>
<tr>
<td>31.</td>
</tr>
<tr>
<td>32.</td>
</tr>
<tr>
<td>33.</td>
</tr>
<tr>
<td>34.</td>
</tr>
<tr>
<td>35.</td>
</tr>
<tr>
<td>36.</td>
</tr>
<tr>
<td>37.</td>
</tr>
<tr>
<td>38.</td>
</tr>
<tr>
<td>39.</td>
</tr>
<tr>
<td>40.</td>
</tr>
<tr>
<td>41.</td>
</tr>
<tr>
<td>42.</td>
</tr>
<tr>
<td>43.</td>
</tr>
</tbody>
</table>

Limitation of Study

The construction of a belt conveyor system requires high capital base. This is a major constraint that limits this work to design only and as such performance evaluation cannot be carried out on the belt conveyor system. However, the research work provides design data for development of belt conveyor system for industrial uses.

CONCLUSION

Using the designed values above, a belt conveyor system with 3 roll idlers can be developed for conveying crushed limestone efficiently without belt spillage and fatalities. A PN 450 double weave standard rubber belt with the specifications above will sufficiently convey the crushed limestone. The belt conveyor system is designed with high degree of automation, loading, movement and unloading efficiency. It is also very flexible, safe, with low initial, operational and maintenance cost while eliminating repetitive short distance movement in the manufacturing industry.

REFERENCES